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1. INTRODUCTION

Flames are known to be natural sources of heat, visible and infrared
radiations. They are usually produced by the ignition of solid, liquid or
gaseous fuel.

More recently, considerable interest has been devoted to the combustion of
droplets of liquid fuels. Studies in the field of spray flames require a
system to generate liquid aerosols of the desired size distributions.

There are generally two broad categories of liquid aerosol generators(ref.l):

(a) Dispersion type in which droplets are produced from a liquid jet at an

orifice or a nozzle.

(b) Condensation type in which aerosols are formed by the gradual cooling

of the supersaturated vapour.

The dispersion type, which is relatively easy to design and manufacture,
usually produces aerosols with a wide distribution of droplet sizes. On the
other hand the condensation type allows the generation of droplets with
relatively uniform size distributions.

The choice of the type of liquid aerosol generator depends on the specific
research interest, and the availability of resources.

For the purpose of producing a large aerosol flame which can be used as an
infrared decoy, the requirement of uniform size distributions is not mandatory
and the dispersion type appears to be sufficient.

This paper reports the design and the characteristics of a liquid aerosol
generator; and the empirical relationship between the mean droplet diameters
and the vapour pressures of the kerosene aerosols.

2. DESIGN

The design of the liquid aerosol generator was based on the following
considerations:

(a) Ability to vary the mean droplet size by a relatively simple
adjustment of the aspirating gas pressure and the fuel flow rate.

(b) Capability to generate large aerosol clouds of liquid fuels of

substantial difference in surface 
tension, viscosity and density.

(c) Continuation of aerosol generation for a duration of approximately
30 s.

The dimensions of the liquid aerosol generator were approximately calculated
by assuming a non-turbulent flow of the liquid fuel and the aspirating gas,
and using the elementary physical principles outlined below:

The fuel flow rate is determined from the Hagen-Poiscuille formula:

- 7 P r'
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where V is the volume of the liquid fuel in cm3 flowing through a capillary
tube of length 1 cm and radius r cm in t a, n is the viscosity in poises and p

the pressure difference in dynes cm" ' between the two ends of the capillary
tube.

The dimensions of the aerosol generator housing and the nozzle through which
the aspirating gas flows are estimated from the Bernoulli equation for the gas
flow of the same level:

p + j p v
2  constant,

and the continuity law:

p A v = constant,

where p is the pressure, p the density, v the velocity of the gas and A is the
cross-sectional area of the passage through which the gas flows.

The aerosol size distribution can be estimated from the empirical equation of
Nukiyama and Tanasawa(ref.2):

d 585 o[,_n 000 Vliq ,

do = + 597 na). Vair

where the denotations are:

d, the mean Sauter droplet diameter and
do the mean droplet diameter in micrometers,

a, the surface tension in dynes cm'
1 ,

p, the density in g cm-3
n, the viscosity in poises,

v, the velocity of the aspirating gas in m s-, and
Vliq and Vair the respective volumes per second of the liquid fuel and the

aspirating air.

In our case, the first term on the right hand side of the equation
predominates(ref.3), as

Vliq 10.

Vair

The schematic diagrams of the liquid aerosol generator are shown in
figures 1(a) and l(b). It can be seen that the fuel flow and the aspirating
gas are separately controlled by the stainless steel needle valves.

For fire safety reasons, the brass fuel tank is allowed to contain a maximum
of 50 cm2 of fuel, an amount which would pr6vide a burn-time of approximately
30 a; or if spilt accidently, a short duration fire would be contained easily.



The capillary tube was made from the stainless steel hypodermic needles
readily available. Four hypodermic needles of length 20 mm were chosen with
internal diameters 0.27 mm, 0.40 mm, 0.55 mm and 0.85 m, and external
diameters 0.50 mm, 0.63 mm, 0.80 mm and 1.10 mm, respectively.

Three gas nozzles, made from brass, were used to accommodate the capillary
needles, and they were of internal diameters 0.80 mm, 1.00 mm and 1.30 mm.

The choice of four capillary tubes and three nozzles makes the aerosol
generator sufficiently versatile for use with fuels of substantial difference
in surface tension, viscosity and density; and allows the production of
aerosols of droplet sizes in the micrometer range.

High fuel flow rates were obtained by applying a constant pressure of 100 kPa
on the fuel. The hydrostatic pressure due to the fuel is less than 0.5 kPa
and is negligible compared to the applied pressure.

When the system was operated with the appropriate adjustment of the fuel flow
valve and the gas pressure valve, a maximum of the fuel flow rate of

2.5 mL s ' was obtained under the folowing conditions:

Applied aspirating gas pressure = 100 kPa
Applied pressure on fuel = 100 kPa
Capillary needle = 0.85 mm (internal diameter)
Gas nozzle =1.30 mm (internal diameter)

A stainless steel impact bead of diameter 3.2 mm placed 2 mm in front of the
nozzle splits the droplet further, and simultaneously spreads the aerosol
cloud radially. This device was found to be necessary to produce the extended
and self-sustaining aerosol flames and therefore was included in the design.

Further regulation of the fuel flow rate and the aspirating gas velocity is
possible by controlling the relative position of the capillary needle with
respect to the gas nozzle.

It was found experimentally that the flame stability increased when the nozzle
housing was rotated one turn away from the main assembly. This configuration
was retained for the calibration of the aerosol generator.

3. RESULTS AND DISCUSSIONS

3.1 Calibration

The aerosol generator was calibrated for the fuel flow rate and the
aspirating gas pressure in terms of the settings of the fuel valve and the
pressure valve, under the following conditions:

Aspirating gas :Nitrogen at 100 kPa
Liquid fuel :Kerosene
Capillary needle :0.85 mm (internal diameter)

* Gas nozzle :1.30 mm (internal diameter)
Position of nozzle :1 turn away from the main assembly

The Calibration Chart constructed in this manner provides a convenient
reference of the fuel flow rate and the aspirating gas pressure when the
aerosol generator is operated in future under the same conditions.

For the pressure calibration, a pressure gauge with the range of
0 to 100 kPa was used, and measurement was made with the fuel flow valve
closed. The pressure calibration curves are shown in figure 2.
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It is evident from figure 2 that the aspirating gas pressure drops when the
gas nozzle housing is adjusted one turn away from the main assembly. This
is expected as the effective cross-sectional area where the aspirating gas
leaves the nozzle increases when the capillary needle is withdrawn from the
nozzle (see figure l(a)).

For the calibration of the fuel flow rate, the measurements of the fuel
flow rate were made as the fuel control valve was successively adjusted, at
a constant setting of the pressure control valve. The actual aspirating
gas pressures at different settings of the fuel flow valve were
simultaneously measured. The calibration curves for the actual aspirating
pressure and the fuel flow rate are shown in figures 3(a) and 3(b), each of
the curves corresponds to a preset pressure valve.

Inspection of figures 3(a) and 3(b) reveals two aspects of the kerosene
generation in that when the aspirating gas pressure valve opens wider to
increase the pressure:

(a) the actual pressure measured in this case is higher than the corres
ponding measurement when no fuel flows; and

(b) the fuel flaw rate decreases.

This first effect is not unexpected as the total pressure is now not only
due to the nitrogen gas, but also to the kerosene vapour and the kerosene
aerosols with droplet diameters less than 50 lim which behave like a
gas (ref .4, 5).

The second effect might appear to be surprising, but a further examination
of the position of the capillary needle relative to that of the gas nozzle
suggests that "blow-back" occurs, and it increases with the preset
aspirating gas pressure.

This result of lower fuel flow giving rise to higher vapour pressure
indicates a larger contribution to the vapour pressure by aerosols
necessarily of smaller mean droplet size.

Such interpretation is supported by the arguments that:

(a) The mean droplet size is inversely proportional to the velocity of
the aspirating gas(ref.2).

(b) Aerosol droplets smaller than 50 u~m behave like a gas(ref.4). From
gas theories, it can be argued that larger vapour pressure must be
contributed by more aerosols of smaller droplet sizes, for a constant
mass of kerosene fuel.

Hence, for our aerosol generating system operated under the conditions
previously described, the vapour pressure could be used as a measure of
the mean droplet size of the kerosene aerosols, especially when the fuel
flow rate is constant. This interpretatiop will be verified
experimentally in the next section.

Using the data in figures 2, 3(a) and 3(b), the vapour pressure and the
fuel flow rate of kerosene were plotted against the pressure control
valve setting for each predetermined fuel control valve, as shown in
figures 4(.a) and 4(b). Each value of the vapour pressure is derived by
taking the difference in aspirating gas pressures for no fuel flow and
fuel flowing at a particular setting of the pressure and fuel control
valves.
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Finally, more detailed calibration curves of the vapour pressure versus
the fuel flow rate for various settings of the pressure and fuel control
valves were constructed in figure 5.

As is evident from figure 5, a single fuel flow rate which corresponds
to different vapour pressures, or a single vapour pressure which
corresponds to different fuel flow rates can be obtained from more than
one appropriate -ombined setting of the pressure and fuel control
valves.

3.2 Particle sizing

It is obvious that whenever possible, the particle sizes of the aerosols
must be measured. However, in- the absence of a reliable particle sizer,
another more conveniently measured quantity, vapour pressure in our case,
is used to implicat'e mean particle size.

This conjecture shall be experimentally verified.

Experimentally, it is extremely difficult to vary the vapour pressure at a
constant fuel flow rate by adjusting only the pressure and fuel control
valves of the aerosol generator. However, it is observed from figure 5
that there are eight convenient settings which correspond to vapour

pressures from 2.40 kPa to 8.18 kPa and fuel flow rates from 1.90 ml, S- to

2.08 mL s 1 . The fuel flow rates of such narrow spread of 0. 18 mL s1

shall be assumed to be constant.

Measurements of the droplet sizes of the kerosene aerosols were performed
on a Malvern particle sizer, Model 2200, for the eight samples of aerosols.

The analysis shows that the aerosols generated are polydispersed, as shown
in figure 6.

From the attendant data on the particle size bands and the weight in the
size bands, the arithmetic mean for the droplet diameters in each
measurement was calculated. The mean droplet diameters were then plotted
against their corresponding vapour pressures, as in figure 7.

An excellent correlation, evident in figure 7, confirms that the vapour
pressure is a good measure of the mean droplet diameter of aerosols
produced in our aerosol generating system.

The verification is very useful to our future investigation of spray
flames, as the Malvern 2200 particle sizer is available to us only on a
very limited basis.

4. CONCLUSION

A liquid aerosol generator of the dispersion type was constructed, and the
kerosene aerosols produced were polydispersed.

The mean droplet diameters measured were found to be inversely proportional to
the vapour pressures of the kerosene aerosols.

In our further work on spray flames, the vapour pressures of kerosene aerosols
will be used to represent the mean droplet diameters.
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